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6.1. Mechanics of n system of Particles

() Conservation theorem for linear jnomenturm -
The net hinear momentuin of a systent of n-particles js

Vn n
P=3 pi=D,mv
i=1 =1

dP
From Newton’s second law, F® = >y

i.e., the rate of change of linear momentum of a system of pam,ie:,, is
equal to the net external force acting on the system.
ext dP -
If F*'=0, s 0. Integrating, P = constant.
This gives the theorem for conservation of linear momentum of ths

~system according to which “If the sum of external forces acting on the system
of particles is zero, the total linear momentum of the system is constan: or

conserved.”
(b) Conservation theorem for angular momentum.
The angular momentum of ith particle of the system about any poin: O,

2 from defimtlon is given by
% Ji=r; Xp;, ()

where r; is the radius vector of /th particle from the point O and p;, it

- linear momentum.
' For a system of n particles, we have

J ZJ zr X P; ...(2)

( dr,
: er —'Er X F; L-"T;Xpizvi):p-":ﬂf

]

Hcre F_ = -g‘ p;= net force acting on i " particle.

S Intemal force*; occur in equal and opposite pairs. Hence the net internal
: 'forcc actmg on the system of particles is zero. Thus,

3 dJ Zr xFerf .ce.rr :
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Here, %= %" . x exr |
i 2 X 1sthe torque arici :
: uc arising due to external forces only,
If V= 09 0
) or J= constant.

- Thus, if external torque
angular momentum of the sygte
This 1s the conserv:

(¢) Conservation o

g f Energy. It the wo

e . . rk done
“independent of path, the force is sajg to be conservati:): )
e If the forces acting on the system of .

i eﬁ ergy of the system of particles which i

acti 'y cl
Cf”_’&’ on - a system of particles s zero, the
M remains constant. )

by a force is

particles are conservative, the totql
S the sum of the total kinetic ener

- and the total potential energy of the system is conserved. =
‘ This is the energy conservation theorem. )
On the other hand if the forces are nton-conservative, the total energy of

- universe (mechanical energy + chemical energ
.+ heat energy etc.) remains constant.

6.2. Basic Concepts

y +sound energy + light energy

~ Degrees of Freedom. The number of mutually independent variables
. _required to define the state or position of a system is the number of degrees of
- freedom possessed by it.

=i For example, the position of a simple ideal mass-point can be defined
- completely by the three cartesian coordinates x,y,z. So it has three degrees of
 freedom. Extending this idea, for a system of'N particles moving independently
. of each other, the number of degrees of freedom is 3 N.

B ‘Constraints. Constraints are restrictions imposed on the position or
" motion of a system, because of geometrical conditions.

S Examples. (1) The beads of an abacus are constrained to one-
- dimensional motion by the supporting wires. _ A
! —(2) Gas molecules within a container are constrained by the walls of the
vessel to move only inside the container. _

' (3) The motion of rigid bodies is always such that the distance between
_any two particles remains unchanged. ; . |

e (4)pA particle placed on the surface of a solid sphere is restricted by the
S Sonstras ' it C y O h rface or in the region exterior to
* constraint so that it can only move on the su !

the:sphere.: aals wli ey dimibaian ad T _ |
Sl pFor a particle constrained to move on a plane, only two vgrlabl/;es X, i o;',
7, are sufficient to describe its motion and the particle is said to t-a}z;z i ’;va
degrees of freedom. Thus, the constraint on the motion of the partic _
pl aﬁé"}'éducei ‘henumb er. Of.deg_f€;€5 of. ﬁeec{om by one. : G S
' Very often, we can express constraints in terms of certain equations.
A &0 of constraint in the case of a particle moving on or
fradmsalsxz'i' yz +722> a,?‘ if the origin of
mth[he centre of the sphre.
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; i« constraints. i
(i) Holonomic and mm-hu!(mnmlc constri | | |
If the constraints €0 be c,,\'pr::sscd as equations connecting
Cof th ' ' .jbly time) 1 the form 6
co-ordinates of the patticles (and possit :
f(rp v Faen r, el o
o be Jiolonontic.

ed in the motion of rigid bodj,
ar points 18 always fixed d:
prcssed as W

are said

raints involv
) particul

trains are €Xx

2
CU-— O.

a particle 18
the equatio

then the constrants
he const
etween any tw(
of cons

Evamples o ¢ 1y 1
~in which the distance b

holonomic since the conditions
’ ‘)
(l',' e r]) -

(2) The constraints involved when

ve or surface aré holonomic. Here
f constraint.
d in the form of Eq. (1), they are

t be expresse

restricted to move algp
n defining the curve ogr

a cur
surface is the equation ©
If the constraints canno

called non-holonomic constraints.
Examples . (1) The constraints involved 1

placed on the surface of a solid sphere are non- ho
- constraints in this case aré expressed as

n the motion of the particle
jonomic. The conditions of

Soie - - P2-a*20,
: where a is the radius of sphere. This is an inequality and hence not in
the form of Eq. (D).
(2) The walls of the gas vessel constitute
~ (3) An object rolling on a rough surfac
example of non-holonomic constraint.
(if) Scleronomic and Rheonomic Constraints. If the constraints ar

: indﬁe'pc"ndent of time, they are called scleronomic.
If the constraints are explicitly dependent on time, they are called

e The :'c:on,st:raint;in‘the case of rigid body motion is scleronomous. Abead
~ sliding on a moving wire is an example of rheonomic constraint '
vl 1In the solution of mechanical problems ints. it

7 /I the solution of MECHATICA BRI the constraints
Sl Lypes of difficulties : introduce tHO
i ‘;.(D The co-ordinates T; are connected by the equations of constraints

i Tf‘,?rﬂfofe, they are not independent. ’
S 2y The-forees of constrai ;

N Ne 101CER.0LEON. nt are not a priori known. I

e be 'CStirH}]jat;d till a complete solution of the problem is obtainfg 4 they canngt
- Thefirst problem can be solved by introducing ek
 whereas the second is practically an A eneralized coordinates,

' ‘ rmountable problem. We therefore

_reformulate the problem such th
reformulate the problem such that the forces of constraint disappe
LA ar.

3  Generalised co-ordinates.
stem consisting of N particles, free from co

rdinates or degrees of freedom. If thén Su‘;ﬁ“j;f ta};nt(si, ko 31\;

R R e N e e degrees 0

a nonholonomic constraint,
e without slipping is also an

~ rheonomic.




Joeal Mechanics '
Classie : 75

frecdom ““‘.” e [?urt.iclcs 1$ k, then the system may be regarded as a collection
of fiee P“‘“’““l“fs bl}b_mctcd o (3N-—-k) independent constraints. So only &
cc)m‘din:ncs are needed to describe the motion of the system. These new
courdinates gy G 4y - qy are called the Generalised Coordinates of
Lagrange: GC“L"'““S‘{Q GU(T’Fd_ilmtcs may be lengths or angles or any other set
of ndependent quantities which define the position of the system. |
Definition. The generalised coordinates of a material system are the
;'udi.‘pgndem parameters qy, 4, 4a,....q; which completely specify the
; mr{ﬁ«‘a’”r‘"i"" of the system, i.e., the position of all its particles with respect to
the frame of reference.
Example. Consider the simple pendulum of mass
my with fixed length ry (Fig. 6.1). The single coordinate

g, will determine uniquely the position of m; since the v 7

simple pendulum is a system of one degree of freedom. ! T
Since the only variable involved is 0y, it can be chosen I8, noy,
as the generalised coordinate. Thus g = 0,. The two | l
coordinates xq and y; could also be used to locate m, I
put would require the inclusion of the equation of the :,_. M
constraint x% +y% = 121 . Since x; and y; are not | X1

' i'ndepén'dent', they are not generalised coordinates. Y

Generalised velocities : The generalised G tRigh6A

velocities of a system are the total time derivatives of
the generalised coordinates of the system.

: . dq; .
Thus g; = —(; (i=1,2,3,..,k).

6.4 Transformation equations.

: The rectangular cartesian co-ordinates can be expressed as the functions
 of generalised co-ordinates. Let x;, y; and z; be the cartesian coordinates of ith

 particle of the system. Let t denote the time. Then, these cartesian co-ordinates
can be expressed as functions of generalised co-ordinates

41,42, 93 Dk €5 ,
B | x; =% (g1 G20 Giol) '

¥i =i (q1, 425+ Giot) (1)
T LT - z;=2;(q1: G255 Qot)

~Let r; be the position vector of ith particle, i.e., r; = ix; +jy; + kz;.
- Then - 5=r(dn 92 93 Te) +(2)
w2 B (2)lSthf=V€Ct0f form of Eq. (1). ‘

.. The equations like (1) and (2) are called transformation equationsa’The
nctions and their derivatives in the above two equations are supposed to be
ontinuous. The equations also contain the constraints explicitly.
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6.5. Configuration space
' In the case of motion of a single particle we can represent ity traject
in the three dimensional space by specilying its variables. For a sysien, ()(;r
particles described by 3N space coordinates with (3N = k) equationg N
constraint in the real space, it is difficult to visualise the motion of the crlni()t
systen. Itis convenient to describe the motion of asystem having kcuordinutrcv
in a hypothetical & dimensional space. The instantancous configuration of u:s
system is described by the values of the _k gcncmliscd C()()rdinme(f
G 1> Ao q3enqy and corresponds 1o & particular point in a cartesian "YPCFSpacZ
where the ¢’y form the & coordinate axes. The point is called the system POint
and the & dimensional space is known as the Configuration space. A SOme
later instant, the state of the system changes and it will be represented by SOme
other point in the configuration space. Thus, the system point moves ip the
configuration space tracing out a curve. This curve represents “the path o
motion of the system”, ““The motion of the system’’, as used above, thep referg
to the motion of the system point along this path in configuration space. Ty
can be considered formally as a parameter of the curve since each point iy the
configuration space has one or more values of time associated with j
Configuration space has nothing in common with the three-dimensional Spacé
W/lll'(.'/l we can visualise physically. It is a purely geometric structure by megp;
of which the laws of the variation of the state of a system can be formulated iy,

geometrical language.
6. 6. Principle of virtual work

Consider a system described by n generalized coordinates -
q, (j=1,2, 3,..., n). Suppose the system undergoes a certain displacement in
the configuration space in such a way that it does not take any time and that it
is consistent with the constraints on the system. Such displacements are called
virtual because they do not represent actual displacements of the system. Since
there is no actual motion of the system, the work done by the forces of

constraint in such a virtual displacement is zero.
Let the virtual displacement of the ith particle of the given system be

dr;. If the given system is in equilibrium, the resultant force acting on the ith

particle of the system must be zero, i.e., I'; = 0. It is, then, obvious that virtual
work F; . 8r; = 0 for the ith particle and hence it is also zero for all the particles

of the system.
F i Ths dW:ZF,-.Sr,-:O .. (1)
The resultant force F, acting c;n the ith particle is
o e | F;=F{ +{; w42)
'_Here, F{ is the applied force and f; is the force of constraint.
~Eq. (1) then becomes | ,
s ST e (3},

S Sr+ Y0 0r=0

i e



Classival Mechanics : Sk

We now consider systems for which the virtual work done by the forces
of constraints is zero, ie.,

YA 6 =0 ()
i
Then g (2 becomes
z l‘l:‘.‘ 1 if‘)l". yod () (5)
i

This equation is termed as principle of virtual work.
6.7. D’ Alembert’s Principle
Most of the systems we come across in mechanics are not in static

equilibrium. Hence the principle must be modified to include dynamic systems
as well. According to Newton’s second law of motion,

F;=p; or F;-p;=0 .. (6)

According to the above equation, a moving system of particles can be
considered to be in equilibrium under the force (F; — p;),i.e., the actual applied
force F; plus an additional force — p; which is known as reversed effective

force on ith particle. Let us again assume that the forces of constraint do no -
work. Then, we can generalize Eq. (5) by the use of Eq. (6) to the form

> (F;—p;).8r;=0 ()

Eq. (7) is the mathematical statement of D’ Alembert’s principle.

It is to be noted here that we have restricted ourselves to the systems
where the virtual work done by the forces of constraints disappears. With this

in mind we can drop the superscript a in equation (2) i.e., D’Alembert’s
principle may be written as

Z (F;~p;) . or;=0. O ®

6.8. Derivation of Lagrange’s Equation of Motion

Lagraﬁge ’s Equations from D’Alembert’s Principle

Consider a system of particles whose position vectors are expressed as
functions of generalized coordinates 91> 42 93 -Gy ---grand the time ¢,

Consider any particle of the system (ith particle) of mass m; and acted
upon by an external force ;.

According to D’ Alembert’s principle, |
| 2 (F;—p).8r;=0 (1)
_ et ol i
Hc’re p; is the inertial force for ith particle and 8r; is the virtual
displacement of ith particle due to action of force F;.
Ingeneral,  r;=r;(qy, 92 93 ---Gpo g D). -(2)

s
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: or; . or; i
o _du . 96, : T Gt
O 1 R S (1;\ + G+ —
T B acl L dq> % E)q 7 a
‘ ar-
Z a a ‘IL ~(3)

i s of generalised
The \lrtual displacement &r; 1n term g sed €0-0rq;.

nates is given by

Now, p;=m; r;
Therefore Eq (1) becomes Z (F; —m, ry).or=0. -(5)
or 2 mr ;. Sr = Z F; . or; (6)

Putting the value of 8r from Eq. (4) in (6), we get

‘EJ

BTR———C PR

e —————

Z > mr; -g; 0qy. = Z 2 ¥i3a. aq - 8qy ---(’Ué

;’ k ari . ari . d _a_l:L
Now, Ef(r"' 552}:” dq; ' dr| g
oo g, o) . d[9n
rf'a]:=a{r,-"aa}-l‘i'dt aqk «(8)
d

)
Putting the value of r; - 3 — from above equation in (7), we get
9k

23eftf 2} -T2 o

Differentiating Eq. (3) partially with respect to g,,

or; OJr;
| 9g,  Ogy #5
: \"leferentlatmg Eq. (3) partially with respect to Qi
o r, i v 92ty 18 9%r, 9r

— + --—__._.
9qy  9q; 9q, 7 9g;, dg, 12° 2
‘Also we have

m e F aqk 3 (1)
. dfor; J ari S al'! i s g O W ;

“ — |l=—|— |/ bt SN P2 PO a ari 5

Bt .V-dt anJ aql_ (aqqul+aq2(aquq2+"'+-_ da: 19k
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—c')'" ] 0° ;. 0> r; 2p.
= o4 E)q,\ aq~ aq aw qu It o 8(;. Sl
Comparing Bgs. (11) and (12), k
d(9r)_ ar
dr | oq,. H—é_&; ++(13)
i) | 1{. or o1
From Eq. (10), g — _dl. o) d 9 (12
dt| ' dq, | dt ri dq, | dt gq_,: (Eri) - (14)
Substituting (13) and (14) in Eq. (9),
z Z m:| — =2 (L 2y _; dr; dr;
-T;.5— = o
e '[dtaqk 5 i i 3, 3qy. zl,g x°aqkSQL
43 or,
or z'. Zl:dr g, (Em,-l‘,'”) FY e (sm;ry) SqLﬂZZF, —5‘;; Oy
- i k :
d o 1 - )
or Eae = = Lt
 S[EREe (B
- S F, Ii & 15
—i k laqqu P
i
Z j_z-mr,-2 = T = total kinetic energy of the system of particles ..-(16)
and F, =
Z : aq Q;. ...(17)
Here Q,’s are components of generalised force.
d oT OJT
Eq. (15) be =
q. (15) becomes, {d, Sac” qk} 8= X.Qi 30y (18
43T _3T _, |
4 94, - 3a; = ...(19)

This is the general form of Lagrange’s equation. There are f such
equations corresponding to f generalised co-ordinates.
When the system is wholly conservative,

av;
F=-—VV—--—-§I'.—, ...(20)
; _
aV; dr; aV; p) oV
= F —_—— i — —_——— V)=——
Qk Z | 2 ar aqk 2', aqk aqk (2 P aqk

& 'He:e, V= Z V; = total potential energy of the system.
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Putting this value of @y in Eq- ( 19), we gel
¢ (9T)_9oT __ 9V

et

dr | Iy TOqr 9y
d(oT)_ 9T 9V _g

P
st | omn

o di| 9g, | dax 99k
d(or ) _d _
. a9l | —=—(T- V) =0.
i dt qu aq,(; le)

energy V is the function of position co- ordinates 4 ang

" The potential
Therefore, Eq. (21) may be written 4

not of the generalised velocities x-

d 9 d _
—— (T — o (T_ V)= 0. .
295, TV o (22
But L = T— V, where L is known as Lagrangian function.
d(9L)_ OL _,
— |~ = U -+ (23)

Eq. (22) becomes, I 2 2dx

This is Lagrange’s equation. for a conservative system.

6.9. Lagrange’s equations for systems containing dissipative forces,

Consider a system of particles containing dissipative or frictional forceg.

The frictional force is proportional to the velocity of the particle, ie.,
F{?=—-Ar;, ()
~ Here F{? denotes the dissipative force, r; is the velocity of i partije
and A; is the corresponding constant of proportionality.
~ Forces of this type are derivable from Rayleigh’s dissipation function g

defined by
. 1 .
R=7 Z Ax7 (2)
1

Here i = 1, 2,...n covers all the particles of the system.

JdR .
gi?lf:liri:"F:(d) from Eq. (1)
A @__OR |
or | F, ar, ..(3)
The Lagrange’s equation in terms of r is given by :
£ a_L __a_é_.F(d)
dt|or| or ! (4
‘Here term —=— represents the dissipative force.

or;

. [
e rL‘ag;ang‘g:’s equation in generalised coordinates qp 1s

I A
j cﬁ(aék]‘é‘q‘ﬁ‘?fc‘”

"where Qﬁ : ris-compon_ent of generalised force.
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n order to find the Lagrange's equation in generalised co- ordinates, we

pave to find the components of gencralised force resulting from the dissipative
1 .

fored,

“(‘)‘ {e])

15 the component of generalised force along g, then

Q=3 F

i

or;

()qk

=-Z7g,ii-‘., [from Eq. (1)]
d)_ _ 9 12
or QL —‘27‘1' Ir i)

Qicﬂ:'-,a—((— . l ...(5)

Therefore the Lagrange’s equation for a system containing dissipative

force is given by
d [ﬁi } dL ' OR

I —_-=+=——=0. ...(6)
dt | dq, gy, 2q,

Hence the term 3 takes into account the dissipative forces.
k

Thus, if dissipative forces are acting on the system, we must specify two

scalar functions — the Lagrangian L and Rayleigh’s dissipation function R- to
derive the equations of motion.

6.10. Applications of Lagrange’s Equations
In order to use Lagrange’s equations for the solution of a physical
problem, one must use the following steps :
- (i) Choose an appropriate coordinate system.
(i) Write down the expressions for potential and kinetic energies.
(iii) Write down the equations of constraint, if any.
(iv) Choose the generalized coordinates.
(v) Setup the Lagrangian. L=T—V.
(vi) Solve Lagrange’s equations for each generalized coordinate using,
- if necessary, the equations of constraint. '
(a) The Atwood’s machine: = .
- Lettwo small heavy particles of masses M 1 and M, be connected by a light
~ inextensible rope of length 1 passing over a frictionless light pulley (Fig. 6.2).
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f 1er tic Cs
1t is found that the heavier particle descengg 6

//\ V=0 the lighter ascends, the system Moving “hij,
U s N Mith

constant acceleration gl

The Atwood's muchine is a Consery, .
X system with a ll()l(')ll()ln.lc u:)nslrraim” There i .‘"fve
1 =X one independent cnordl_natc x. The POSitioy ‘();;n]y
M other particle is determined by the COnSstryjp, y i
= ] the length of the rope between them is /. lag
The PE. of the system

The K.E. of the system
Fig. 6.2 _ =l ‘
ig . T 5 (M, +M2)x2

MZ.!

%)

Hence, the Lagrangian function is given by
L=T-V=3M; +Mp)x*+Mgx+Mel—x)

The Lagrange’s equation for a conservative system is
dloL| JL _ 0

dt a—q: —-aq,
‘Since the system has only one degree of freedom, there is only One

equation of motion, involving the derivatives.
.. The equation of motion of the system is given by

dfaL) oL_,
dt|ox| ox

From the expression for L we get, 5,% = (M| —Myg;
oL . dfoL) d : .
A We have, (M, +M)X — (M) — M,)g=0.
. M —-M,
9r o M, +-M2g'
e (b) A bead sliding on a Uniformly Rotating wire in a Force Free
pace ‘

~ Let OB be a straight frictionless wire fixed at

apoint O (Fig. 6.3). Suppose the wire rotates about

a perpendicular axis through O with constant

angular velocity w. Let r be the distance of the bead

from point O of the wire at time . In this example,

X constralnt is time dependent given by the relation

0= where @ is the angular velocity of rotation.

T'hen the rectangular coordinates of the bead are

given by SHERDG BT Bty

: X=rcos8=rcos wr
Y=rsin®=rsin @t




